Development of A Predictive Model for Work-Relatedness of MSDs Among Semiconductor Back-End Workers

Development of A Predictive Model for Work-Relatedness of MSDs Among Semiconductor Back-End Workers

Objective: There are limited models available to predict the linkages of musculoskeletal work (MSDS) among semiconductor back-end workers. This study seeks to overcome the gap through the development of predictive models for this specific population. Methods: Potential MSDS Risk Factors Extracted from 277 Ergonomic Investigation Reports for Work Compensation Claims conducted between 2011 – 2019.

Binary logistic regression approach is used to determine the predictor of extracted data. Result: significant predictor (p <0.05) includes poor posture (or = 1.822; 95% CI [1,261,2,632]), strong activity (or = 1.741; 95% CI [1,281,2,367)), static posture ( or = 1,796); 95% CI [1,367,2,378]), the appointment (or = 1.438; 95% CI [0.966,1,880]), transferred (or = 1.533; 95% CI [1,101,136]), push-pull (or = 0.990; 95% CI [0.744,1,317])), fix (or = 0.845; 95% CI [0.616,1,159]), preventive maintenance (or = 1,061; 95% CI [0.765,1,471]) and quality inspection (or = 0.982; 95% CI [0.729,1,322]).

Personal factors and labor duration also play an important role in this prediction model. The accuracy of the model carried out through cross validation with 30 new data sets is 86.2%. Face validation activities among 30 experts show promising results, with a score of the average agreement on predictor inclusion which will be assessed at 7.9 / 10 (SD = 1.9). Conclusion: This model allows practitioners to predict the potential of MSD cases among semiconductor back-end workers, and proactively plan the right mitigation measures.

Data collection in multiple sclerosis: MSDS Approach

Multiple Sclerosis (MS) is a chronic inflammatory disease that often occurs in the central nervous system that affects patients for decades. As MS monitoring and treatment becomes more personalized and complex, assessment and collection of different parameters ranging from clinical assessment through laboratories and imaging data to data reported by patients becomes increasingly important for innovative patient management in MS. These aspects are predestin electronic data processing for use in MS documentation.

Such technology allows fast health information exchange between patients, practitioners, and caregivers, regardless of time and location. In this paper perspective, we present our digital strategy from Dresden, where we are developing multiple sclerosis Documentation System (MSDS) into the EHEALTH platform that can be used for various purposes. Various use cases are presented that apply this software platform and offer an important perspective for the management of innovative digital patients in the future. MS holistic patient management, electronically supported by clinical lines, will have an important impact on other patient care fields, such as neurorehabilitation.

RAMP package for MSD risk management in handling manuals – tools that can be accessed freely, with website and training courses.

In this paper, the ramp package is served with the aim of facilitating the application of ramp tools to systematically manage MSD risk. This package consists of ramp tools (risk assessment and management tool for proactively handling manuals), websites ramp, and free, globally available, training courses (MOOCs). The module of action used to manage the identified MSD risk is introduced. This tool, which includes various risks, applies to the entire risk management process.

Next, the ramp is open openly for download, and free to use. Ramp tools and training materials are developed using participatory iterative methodologies including researchers and practitioners. Ramp is downloaded in 86 countries in the first 26 months since it was launched and more than 2400 students from high and low income countries have joined the MOOC. RAMP packages meet the needs of organizations for risk assessment tools and comprehensive risk management.

The prevalence of MSDS and risk assessment of posture on the floor mopping activities through subjective and objective steps.

Housing and commercial cleaning is part of our daily routine to maintain sanitation around the environment. Professional health care involved in such cleaning activities has been a major concern throughout the world. This study investigated the risk of musculoskeletal disorders in professional cleaners involved in mopping floor assignments. Cross-sectional studies were carried out on 132 professional mopping using the modified Nordic questionnaire. Pearson correlation tests are implemented to study the relationship of pain felt by work experience. Muscle strains and postural risks are evaluated using three-channel electromyography and real-time movement taking each of 15 professionals during the mopping floor.

Development of A Predictive Model for Work-Relatedness of MSDs Among Semiconductor Back-End Workers
Regarding musculoskeletal injury, the risk reported in the majority in the right hand, lower back, left wrist, right shoulder, left biceps, and worker’s right wrist. Work experience has a low negative relationship with MSDS on the left wrist, right wrist, right elbow, lower back, and right arm (P <0.01). The EMG surface shows the occurrence of higher muscle activity in the muscle of trapezius and biceps brisachi (BB) over and the muscles of flexor carpi are dominant and the BB muscles from the hands that are not dominant at the top and bottom of the mop stem, respectively.

The relationship between the body mass index and pain intensity among veterans with musculoskeletal disorders: findings from the MSD cohort study.

To check the relationship between the body mass index (BMI) and the intensity of pain among veterans with the diagnosis of musculoskeletal disorders (MSDS; nontraumatic joints; osteoarthritis; lower back pain, back, and neck). Veteran Health Record Data (VHA). The national cohort of US military veterans with MSDS in VHA CARE during 2001-2012 (n = 1,759,338). These cross-sectional data were analyzed using the negative binomial model of pain intensity as a BMI function, adjusted to comorbidity. and demographics.

Samples have an average age of 59.4, 95% are men, 77% white / non-Hispanic, 79% overweight or obese, and 42% report no pain in the diagnosis of the MSD index. Overall, there is a J-shaped relationship between BMI and pain (Nadir = 27 kg / m2), with severe obesity (BMI ≥ 40 kg / m2) most likely to report pain (or vs. normal weight = 1.23, 95% interval trust = 1.21-1.26).

Donkey anti Rat IgG (H + L) (Alexa Fluor 594)

43R-ID047AF 500 ug
EUR 462
Description: Donkey anti Rat IgG (H + L) secondary antibody (Alexa Fluor 594)

Donkey anti Chicken IgY (H + L) (Alexa Fluor 594)

43R-ID056AF 500 ug
EUR 343
Description: Donkey anti Chicken IgY secondary antibody (H + L) (Alexa Fluor 594)

Rabbit anti Chicken IgY (H + L) (Alexa Fluor 594)

43R-IR016AF 1 mg
EUR 281
Description: Rabbit anti Chicken IgY (H + L) secondary antibody (Alexa Fluor 594)

Endoglin/CD105 Alexa Fluor

FC15024 100 Tests
EUR 448

Goat Anti-Mouse IgG(H+L) Alexa Fluor 594–conjugated

S0005 200ul
EUR 376

Goat Anti-Rabbit IgG(H+L) Alexa Fluor 594–conjugated

S0006 200ul
EUR 376

Donkey anti Goat IgG (H + L) (Fab 2) (Alexa Fluor 594)

43R-ID012AF 300 ug
EUR 410
Description: Donkey anti Goat IgG (H + L) secondary antibody (Fab'2) (Alexa Fluor 594)

Donkey Anti-Goat IgG (H+L), Alexa Fluor® 594 Conjugated

Ab8011-001 1mg
EUR 334

EGFR antibody (Alexa Fluor 488)

61R-E109BAF 125 ug
EUR 706
Description: Mouse monoclonal EGFR antibody (Alexa Fluor 488)

SAM FCM (Alexa Fluor 647)

abx098902-100tests 100 tests
EUR 1233
  • Shipped within 5-10 working days.

SAM FCM (Alexa Fluor 488)

abx098904-60tests 60 tests
EUR 1358
  • Shipped within 5-10 working days.

Anti-RPSA Alexa Fluor® 488

A4-829-C100 0.1 mg
EUR 310

Anti-CD40 antibody (Alexa-fluor 488)

STJ170000 100 µg
EUR 393
Description: CD40 (48 to 50 kDa) is a transmembrane glycoprotein mainly expressed on the surface of B cells and also expressed on monocytes, dendritic cells, and thymic epithelium. CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily, which includes the low affinity nerve growth factor (NGF) receptor and CD95/Fas. CD40 is the receptor for CD40 ligand. CD40L (CD40L, CD154, gp39, and TRAM) belongs to the TNF gene family and is expressed more widely than CD40, predominantly on activated CD4+ T cells. Following interaction with CD40 ligand, CD40 mediates a number of major immunoregulatory functions, central to the control of thymus dependent humoral immunity and may be critical in the development of cell mediated immune responses. Other biological actions include B cell homotypic adhesion, proliferation, immunoglobulin isotype switch, and secretion. Activation of CD40 has also been shown to inhibit the growth of certain B cell lymphomas and to induce the death of transformed cells of mesenchymal or epithelial origin

Anti-LAMP3 antibody (Alexa-fluor 488)

STJ170004 100 µg
EUR 393
Description: The dendritic cell lysosomal-associated membrane protein (DC-LAMP)/CD208 is a type I integral transmembrane glycoprotein mostly homologous to CD68, of about 45 kDa in mouse and 90 kDa in human (glycosylation), with a bipartite C-terminal structure divided by a serine/proline rich region, a transmembrane domain and a conserved tyrosine-based lysosomal targeting motif in its cytoplasmic tail. Initially cloned as a specific marker of human mature dendritic cells (DCs), DC-LAMP has been subsequently shown to be expressed in alveolar type II pneumocytes. In both cell types, the molecule is found in the limiting membrane of intracellular multi-lamellar bodies, known as MIIC (MHC class II compartments) in human mature DCs and as lung surfactant-containing lamellar bodies in type II pneumocytes. In the latter cell type, DC-LAMP expression is also detected at the cell surface.

Anti-LAMP3 antibody (Alexa-fluor 546)

STJ170005 100 µg
EUR 393
Description: The dendritic cell lysosomal-associated membrane protein (DC-LAMP)/CD208 is a type I integral transmembrane glycoprotein mostly homologous to CD68, of about 45 kDa in mouse and 90 kDa in human (glycosylation), with a bipartite C-terminal structure divided by a serine/proline rich region, a transmembrane domain and a conserved tyrosine-based lysosomal targeting motif in its cytoplasmic tail. Initially cloned as a specific marker of human mature dendritic cells (DCs), DC-LAMP has been subsequently shown to be expressed in alveolar type II pneumocytes. In both cell types, the molecule is found in the limiting membrane of intracellular multi-lamellar bodies, known as MIIC (MHC class II compartments) in human mature DCs and as lung surfactant-containing lamellar bodies in type II pneumocytes. In the latter cell type, DC-LAMP expression is also detected at the cell surface.

Anti-LAMP3 antibody (Alexa-fluor 647)

STJ170006 100 µg
EUR 393
Description: The dendritic cell lysosomal-associated membrane protein (DC-LAMP)/CD208 is a type I integral transmembrane glycoprotein mostly homologous to CD68, of about 45 kDa in mouse and 90 kDa in human (glycosylation), with a bipartite C-terminal structure divided by a serine/proline rich region, a transmembrane domain and a conserved tyrosine-based lysosomal targeting motif in its cytoplasmic tail. Initially cloned as a specific marker of human mature dendritic cells (DCs), DC-LAMP has been subsequently shown to be expressed in alveolar type II pneumocytes. In both cell types, the molecule is found in the limiting membrane of intracellular multi-lamellar bodies, known as MIIC (MHC class II compartments) in human mature DCs and as lung surfactant-containing lamellar bodies in type II pneumocytes. In the latter cell type, DC-LAMP expression is also detected at the cell surface.

Anti-IL3RA antibody (Alexa-fluor 488)

STJ170009 100 µg
EUR 393
Description: IL3 exerts its biologic activity through its interaction with a cell surface receptor that consists of two subunits. The a subunit (CD123) specifically binds IL3, whereas the ß subunit is required for signaling and is common to the GMCSFR and IL5-R. 107D2.08 and 106C2.02 mAbs were obtained after mouse immunization with sorted human tonsillar PDC. Both clones strongly stain PDCs and basophils, weakly stain monocytes, CD34+ derived DCs and CD11c+ DC, while no staining is observed on T, B, NK cells as well as on mono-derived DCs. Staining with 107D2.08 and 106C2.02 mAbs are maintained on sorted PDC cultured in the presence of IL3 and CD40L, but lost when IL3 alone is added to the culture. The recognition of the IL3Ra chain by 107D2.08 and 106C2.02 was confirmed by transfection studies. 107D2.08 appeared to be the most appropriate clone for in situ studies. 107D2.08 allowed the first observation of IL3Ra+ cells in breast tumor microenvironment

Anti-IL3RA antibody (Alexa-fluor 546)

STJ170010 100 µg
EUR 393
Description: IL3 exerts its biologic activity through its interaction with a cell surface receptor that consists of two subunits. The a subunit (CD123) specifically binds IL3, whereas the ß subunit is required for signaling and is common to the GMCSFR and IL5-R. 107D2.08 and 106C2.02 mAbs were obtained after mouse immunization with sorted human tonsillar PDC. Both clones strongly stain PDCs and basophils, weakly stain monocytes, CD34+ derived DCs and CD11c+ DC, while no staining is observed on T, B, NK cells as well as on mono-derived DCs. Staining with 107D2.08 and 106C2.02 mAbs are maintained on sorted PDC cultured in the presence of IL3 and CD40L, but lost when IL3 alone is added to the culture. The recognition of the IL3Ra chain by 107D2.08 and 106C2.02 was confirmed by transfection studies. 107D2.08 appeared to be the most appropriate clone for in situ studies. 107D2.08 allowed the first observation of IL3Ra+ cells in breast tumor microenvironment

Anti-IL3RA antibody (Alexa-fluor 647)

STJ170011 100 µg
EUR 393
Description: IL3 exerts its biologic activity through its interaction with a cell surface receptor that consists of two subunits. The a subunit (CD123) specifically binds IL3, whereas the ß subunit is required for signaling and is common to the GMCSFR and IL5-R. 107D2.08 and 106C2.02 mAbs were obtained after mouse immunization with sorted human tonsillar PDC. Both clones strongly stain PDCs and basophils, weakly stain monocytes, CD34+ derived DCs and CD11c+ DC, while no staining is observed on T, B, NK cells as well as on mono-derived DCs. Staining with 107D2.08 and 106C2.02 mAbs are maintained on sorted PDC cultured in the presence of IL3 and CD40L, but lost when IL3 alone is added to the culture. The recognition of the IL3Ra chain by 107D2.08 and 106C2.02 was confirmed by transfection studies. 107D2.08 appeared to be the most appropriate clone for in situ studies. 107D2.08 allowed the first observation of IL3Ra+ cells in breast tumor microenvironment

Anti-CD207 antibody (Alexa-fluor 488)

STJ170014 100 µg
EUR 393
Description: Langerin/CD207 is a transmembrane C-type lectin receptor (CLR) of epidermal and mucosal Langerhans cells (LCs) that induces Birbeck's granule formation. Langerin features a single carbohydrate recognition domain (CRD) with mannose-type specificity in its extracellular portion. Langerin is unique among the CLRs in that it contains an intracellular domain with a proline-rich motif. Langerin expression has not been reported outside the DC system. (Valladeau J et al, 1999, Eur.J.Immunol., 29:2695-2704; Valladeau J et al, 2000 Immunity, 12 : 71-81; Kashihara M et al, 1986, J.Invest.Derm., 87 :602-607 Ito T et al, 1999, J.Immunol., 163 :1409-1419 ;Saeland S & Valladeau J, CD207 (Langerin) Workshop reports 2002, Leukocyte-Typing VII, White Cell Diff Antigens, D. Mason et al, Eds, Oxford University Press:306-307)

Anti-CD207 antibody (Alexa-fluor 546)

STJ170015 100 µg
EUR 393
Description: Langerin/CD207 is a transmembrane C-type lectin receptor (CLR) of epidermal and mucosal Langerhans cells (LCs) that induces Birbeck's granule formation. Langerin features a single carbohydrate recognition domain (CRD) with mannose-type specificity in its extracellular portion. Langerin is unique among the CLRs in that it contains an intracellular domain with a proline-rich motif. Langerin expression has not been reported outside the DC system. (Valladeau J et al, 1999, Eur.J.Immunol., 29:2695-2704; Valladeau J et al, 2000 Immunity, 12 : 71-81; Kashihara M et al, 1986, J.Invest.Derm., 87 :602-607 Ito T et al, 1999, J.Immunol., 163 :1409-1419 ;Saeland S & Valladeau J, CD207 (Langerin) Workshop reports 2002, Leukocyte-Typing VII, White Cell Diff Antigens, D. Mason et al, Eds, Oxford University Press:306-307)

Anti-CD207 antibody (Alexa-fluor 647)

STJ170016 100 µg
EUR 393
Description: Langerin/CD207 is a transmembrane C-type lectin receptor (CLR) of epidermal and mucosal Langerhans cells (LCs) that induces Birbeck's granule formation. Langerin features a single carbohydrate recognition domain (CRD) with mannose-type specificity in its extracellular portion. Langerin is unique among the CLRs in that it contains an intracellular domain with a proline-rich motif. Langerin expression has not been reported outside the DC system. (Valladeau J et al, 1999, Eur.J.Immunol., 29:2695-2704; Valladeau J et al, 2000 Immunity, 12 : 71-81; Kashihara M et al, 1986, J.Invest.Derm., 87 :602-607 Ito T et al, 1999, J.Immunol., 163 :1409-1419 ;Saeland S & Valladeau J, CD207 (Langerin) Workshop reports 2002, Leukocyte-Typing VII, White Cell Diff Antigens, D. Mason et al, Eds, Oxford University Press:306-307)

Anti-IL7R antibody (Alexa-fluor 488)

STJ170020 100 µg
EUR 393
Description: The IL7-R consists of 2 chains, IL-7R known as CD127 and common cytokine receptor chain known as CD132. A 75 to 80kDa human IL-7 receptor has been cloned that belongs to hematopoietic cytokinereceptor super family. R34-34, raised against human leukemic pre-B cells, recognized a molecule expressed on normal B cell precursors but not on mature B cells. This antibody specifically reverted IL-7 mediated growth inhibition of leukemic BCP (normal B cells precursors) and mature T cells. IL-7R expression is dramatically influenced by cytokines and antigens. This IL-7R displays both high and low affinity for its ligand (IL-7). Inhibitory and proliferative effects of IL-7 can be mediated through the same receptor on various lineages. CD4+ memory T cells express high level of IL-7R Subsets that express it generally require it, including progenitors of T and B cells, naïve and memory T cells. (Pandrau-Garcia D et al, 1994, Blood, 83, 3613-9 Mazzucchelli R et al, Nat. Review Immunol., 2007,7, 144-54)

Anti-IL7R antibody (Alexa-fluor 546)

STJ170021 100 µg
EUR 393
Description: The IL7-R consists of 2 chains, IL-7R known as CD127 and common cytokine receptor chain known as CD132. A 75 to 80kDa human IL-7 receptor has been cloned that belongs to hematopoietic cytokinereceptor super family. R34-34, raised against human leukemic pre-B cells, recognized a molecule expressed on normal B cell precursors but not on mature B cells. This antibody specifically reverted IL-7 mediated growth inhibition of leukemic BCP (normal B cells precursors) and mature T cells. IL-7R expression is dramatically influenced by cytokines and antigens. This IL-7R displays both high and low affinity for its ligand (IL-7). Inhibitory and proliferative effects of IL-7 can be mediated through the same receptor on various lineages. CD4+ memory T cells express high level of IL-7R Subsets that express it generally require it, including progenitors of T and B cells, naïve and memory T cells. (Pandrau-Garcia D et al, 1994, Blood, 83, 3613-9 Mazzucchelli R et al, Nat. Review Immunol., 2007,7, 144-54)

Anti-IL7R antibody (Alexa-fluor 647)

STJ170022 100 µg
EUR 393
Description: The IL7-R consists of 2 chains, IL-7R known as CD127 and common cytokine receptor chain known as CD132. A 75 to 80kDa human IL-7 receptor has been cloned that belongs to hematopoietic cytokinereceptor super family. R34-34, raised against human leukemic pre-B cells, recognized a molecule expressed on normal B cell precursors but not on mature B cells. This antibody specifically reverted IL-7 mediated growth inhibition of leukemic BCP (normal B cells precursors) and mature T cells. IL-7R expression is dramatically influenced by cytokines and antigens. This IL-7R displays both high and low affinity for its ligand (IL-7). Inhibitory and proliferative effects of IL-7 can be mediated through the same receptor on various lineages. CD4+ memory T cells express high level of IL-7R Subsets that express it generally require it, including progenitors of T and B cells, naïve and memory T cells. (Pandrau-Garcia D et al, 1994, Blood, 83, 3613-9 Mazzucchelli R et al, Nat. Review Immunol., 2007,7, 144-54)

Goat anti Mouse IgG1 (Alexa Fluor 488)

43R-1649 500 ug
EUR 570
Description: Goat anti Mouse IgG1 secondary antibody (Alexa Fluor 488)

Anti-Hu CD16 Alexa Fluor® 488

A4-646-T100 100 tests
EUR 269

Rabbit Anti-Rat IgG (H+L)-Alexa 594 Fluor conjugate (adsorbed with human IgG)

50337 0.5 ml
EUR 225

Alpha Fluor™ 594 C5 Maleimide

1891 1 mg
EUR 219
  • R-phrase: R20, R21, R22
  • H-Phrase: H303, H313, H333
  • Symbol for dangerous compounds: Xn
  • UNSPEC Code: 12171501

Streptavidin-Alexa594 (Alexas fluor 594) conjugate

SV-A594-100 100 tests
EUR 225

Alpha Fluor™ 532 acid [equivalent to Alexa Fluor™ 532 acid]

1795 10 mg
EUR 393
  • R-phrase: R20, R21, R22
  • H-Phrase: H303, H313, H333
  • Symbol for dangerous compounds: Xn
  • UNSPEC Code: 12171501

AF350 Phalloidin [equivalent to Alexa Fluor® 350 phalloidin]

23150 300 Tests
EUR 306
  • R-phrase: R23, R24, R25
  • H-Phrase: H301, H311, H331
  • Symbol for dangerous compounds: T
  • UNSPEC Code: 12352200

AF488 Phalloidin [equivalent to Alexa Fluor® 488 phalloidin]

23153 300 Tests
EUR 306
  • R-phrase: R23, R24, R25
  • H-Phrase: H301, H311, H331
  • Symbol for dangerous compounds: T
  • UNSPEC Code: 12352200

AF350-streptavidin conjugate [Streptavidin, Alexa Fluor™ 350 Conjugate]

16890 1 mg
EUR 176
  • R-phrase: R20, R21, R22
  • H-Phrase: H303, H313, H333
  • Symbol for dangerous compounds: Xn
  • UNSPEC Code: 12171501

AF488-streptavidin conjugate [Streptavidin, Alexa Fluor™ 488 Conjugate]

16891 1 mg
EUR 176
  • R-phrase: R20, R21, R22
  • H-Phrase: H303, H313, H333
  • Symbol for dangerous compounds: Xn
  • UNSPEC Code: 12171501

Donkey anti Goat IgG (H + L) (Alexa Fluor 647)

43R-ID028AF 500 ug
EUR 430
Description: Donkey anti Goat IgG (H + L) secondary antibody (Alexa Fluor 647)

Donkey anti Chicken IgY (H + L) (Alexa Fluor 647)

43R-ID060AF 300 ug
EUR 425
Description: Donkey anti Chicken IgY (H + L) (Fab'2) (Alexa Fluor 647)

Anti-Hu CD72 Alexa Fluor® 488

A4-310-T100 100 tests
EUR 269

Anti-Bov CD9 Alexa Fluor® 488

A4-354-C100 0.1 mg
EUR 269

Anti-Hu CD30 Alexa Fluor® 700

A7-455-T100 100 tests
EUR 269

Anti-Hu CD94 Alexa Fluor® 700

A7-727-T100 100 tests
EUR 269

Anti-Hu CD56 Alexa Fluor® 700

A7-789-T100 100 tests
EUR 269

Goat Anti-Rabbit IgG(H+L) Alexa Fluor 647–conjugated

S0013 200ul
EUR 304

Goat Anti-Mouse IgG(H+L) Alexa Fluor 647–conjugated

S0014 200ul
EUR 304

Goat Anti-Mouse IgG(H+L) Alexa Fluor 488–conjugated

S0017 200ul
EUR 304

Goat Anti-Rabbit IgG(H+L) Alexa Fluor 488–conjugated

S0018 200ul
EUR 304

Donkey Anti-Rabbit IgG (H+L), Alexa Fluor® 488 Conjugated

Ab8032-001 0.5mg
EUR 435

Anti-Hu CD3 zeta (pY153) Alexa Fluor® 488

A4-686-C100 0.1 mg
EUR 269

Anti-Hu CD3 zeta (pY72) Alexa Fluor® 488

A4-712-C100 0.1 mg
EUR 269

Anti-Hu CD3 zeta (pY142) Alexa Fluor® 488

A4-730-C100 0.1 mg
EUR 269

Anti-Hu CD3 zeta (pY111) Alexa Fluor® 488

A4-737-C100 0.1 mg
EUR 269

Anti-Hu CD3 zeta (pY153) Alexa Fluor® 647

A6-686-C100 0.1 mg
EUR 269

Anti-Hu CD3 zeta (pY72) Alexa Fluor® 647

A6-712-C100 0.1 mg
EUR 269

Anti-Hu CD3 zeta (pY142) Alexa Fluor® 647

A6-730-C100 0.1 mg
EUR 269

Anti-Hu CD3 zeta (pY111) Alexa Fluor® 647

A6-737-C100 0.1 mg
EUR 269

Anti-LAMP3 (human) Monoclonal Antibody (104G4) (Alexa Fluor® 488)

M09406 100ug
EUR 565
Description: Mouse Monoclonal LAMP3 (human) Antibody (104G4) (Alexa Fluor® 488). Validated in IHC and tested in Human.

Anti-Langerin (human) Monoclonal Antibody (DCGM4/122D5) (Alexa Fluor® 488)

M02316 100ug
EUR 580
Description: Mouse Monoclonal Langerin (human) Antibody (DCGM4/122D5) (Alexa Fluor® 488). Validated in IHC and tested in Human.

Rabbit Anti-Rat IgG (H+L)-Alexa 488 Fluor conjugate (adsorbed with human IgG)

50336 0.5 ml
EUR 225

Recombinant (E.Coli) Human Thyrostimulin Beta

RP-594 10 ug
EUR 286

BBT-594

B2114-25
EUR 631

BBT-594

B2114-5
EUR 196

Alpha Fluor™ 488 amine

1705 1 mg
EUR 306
  • R-phrase: R20, R21, R22
  • H-Phrase: H303, H313, H333
  • Symbol for dangerous compounds: Xn
  • UNSPEC Code: 12171501

Alpha Fluor™ 488 Hydroxylamine

1900 1 mg
EUR 306
  • R-phrase: R20, R21, R22
  • H-Phrase: H303, H313, H333
  • Symbol for dangerous compounds: Xn
  • UNSPEC Code: 12171501

Tide Fluor 2-LL-37

H-8286.0100 0.1mg
EUR 312
Description: Sum Formula: C205H340N60O53+dye

Tide Fluor 2-LL-37

H-8286.0500 0.5mg
EUR 1017
Description: Sum Formula: C205H340N60O53+dye

Anti-Cytokeratins Alexa Fluor488

A4-108-C025 0.025 mg
EUR 175

Anti-Cytokeratins Alexa Fluor488

A4-108-C100 0.1 mg
EUR 310

Anti-PSMA Alexa Fluor488

A4-539-C025 0.025 mg
EUR 227

Anti-PSMA Alexa Fluor488

A4-539-C100 0.1 mg
EUR 414

Anti-FoxP3 Alexa Fluor488

A4-601-C025 0.025 mg
EUR 201

Anti-FoxP3 Alexa Fluor488

A4-601-C100 0.1 mg
EUR 362

Anti-Phosphotyrosine Alexa Fluor647

A6-263-C025 0.025 mg
EUR 154

Anti-Phosphotyrosine Alexa Fluor647

A6-263-C100 0.1 mg
EUR 269

Anti-LCK Alexa Fluor647

A6-269-C025 0.025 mg
EUR 206

Anti-LCK Alexa Fluor647

A6-269-C100 0.1 mg
EUR 373

Anti-FoxP3 Alexa Fluor647

A6-601-C025 0.025 mg
EUR 201

Anti-FoxP3 Alexa Fluor647

A6-601-C100 0.1 mg
EUR 362

Metal Fluor™ Zn-520, AM

21263 1 mg
EUR 219
  • R-phrase: R20, R21, R22
  • H-Phrase: H303, H313, H333
  • Symbol for dangerous compounds: Xn
  • UNSPEC Code: 12352200

Alpha Fluor™ 488 NHS Ester

1812 1 mg
EUR 219
  • R-phrase: R20, R21, R22
  • H-Phrase: H303, H313, H333
  • Symbol for dangerous compounds: Xn
  • UNSPEC Code: 12171501

Alpha Fluor™ 532 NHS Ester

1819 1 mg
EUR 219
  • R-phrase: R20, R21, R22
  • H-Phrase: H303, H313, H333
  • Symbol for dangerous compounds: Xn
  • UNSPEC Code: 12171501

Helix Fluor™ 6-JOE Phosphoramidite

6046 100 umoles
EUR 50
  • R-phrase: R20, R21, R22
  • H-Phrase: H303, H313, H333
  • Symbol for dangerous compounds: Xn
  • UNSPEC Code: 12171501

Tide Fluor 2-LL-37 (scrambled)

H-8288.0100 0.1mg
EUR 312
Description: Sum Formula: C205H340N60O53+dye

Tide Fluor 2-LL-37 (scrambled)

H-8288.0500 0.5mg
EUR 1017
Description: Sum Formula: C205H340N60O53+dye

Tide Fluor 5WS-o-Conotoxin GVIA

H-8356.0100 0.1mg
EUR 1146
Description: Sum Formula: C120H182N38O43S6+dye

Streptavidin-Alexa488 (Alexas fluor 488) conjugate

SV-A488-100 100 tests
EUR 225

Anti-Cytokeratin 18 Alexa Fluor488

A4-106-C025 0.025 mg
EUR 186

Anti-Cytokeratin 18 Alexa Fluor488

A4-106-C100 0.1 mg
EUR 331

Anti-Cytokeratin 19 Alexa Fluor488

A4-120-C025 0.025 mg
EUR 186

Anti-Cytokeratin 19 Alexa Fluor488

A4-120-C100 0.1 mg
EUR 331

Anti-Ki-67 Alexa Fluor488

A4-155-T025 25 tests
EUR 154

Anti-Ki-67 Alexa Fluor488

A4-155-T100 100 tests
EUR 269

Anti-Hu CD45 Alexa Fluor488

A4-160-T100 100 tests
EUR 269

Anti-Hu CD193 Alexa Fluor488

A4-161-T100 100 tests
EUR 269

Anti-Hu CD279 Alexa Fluor488

A4-176-T100 100 tests
EUR 269

Anti-Hu CD43 Alexa Fluor488

A4-220-T025 25 tests
EUR 154

Anti-Hu CD43 Alexa Fluor488

A4-220-T100 100 tests
EUR 269

Anti-Hu CD44 Alexa Fluor488

A4-221-T025 25 tests
EUR 154

Anti-Hu CD44 Alexa Fluor488

A4-221-T100 100 tests
EUR 269

Anti-Hu CD45 Alexa Fluor488

A4-222-T025 25 tests
EUR 154

Anti-Hu CD45 Alexa Fluor488

A4-222-T100 100 tests
EUR 269

Anti-Hu CD55 Alexa Fluor488

A4-230-T025 25 tests
EUR 154

Anti-Hu CD55 Alexa Fluor488

A4-230-T100 100 tests
EUR 269

Anti-Hu CD50 Alexa Fluor488

A4-266-T025 25 tests
EUR 154

Anti-Hu CD50 Alexa Fluor488

A4-266-T100 100 tests
EUR 269

Anti-Hu CD31 Alexa Fluor488

A4-273-T025 25 tests
EUR 154

Anti-Hu CD31 Alexa Fluor488

A4-273-T100 100 tests
EUR 269

Anti-Hu CD147 Alexa Fluor488

A4-274-T025 25 tests
EUR 154

Anti-Hu CD147 Alexa Fluor488

A4-274-T100 100 tests
EUR 269

Anti-Hu CD34 Alexa Fluor488

A4-297-T025 25 tests
EUR 154

Anti-Hu CD34 Alexa Fluor488

A4-297-T100 100 tests
EUR 269

Anti-Hu CD105 Alexa Fluor488

A4-298-T025 25 tests
EUR 154

Anti-Hu CD105 Alexa Fluor488

A4-298-T100 100 tests
EUR 269

Anti-Hu CD41 Alexa Fluor488

A4-309-T025 25 tests
EUR 154

Anti-Hu CD41 Alexa Fluor488

A4-309-T100 100 tests
EUR 269

Anti-Hu CD72 Alexa Fluor488

A4-310-T025 25 tests
EUR 154

Anti-Hu CD63 Alexa Fluor488

A4-343-T025 25 tests
EUR 154

Anti-Hu CD63 Alexa Fluor488

A4-343-T100 100 tests
EUR 269

Anti-Hu CD13 Alexa Fluor488

A4-396-T025 25 tests
EUR 154

Anti-Hu CD13 Alexa Fluor488

A4-396-T100 100 tests
EUR 269

Anti-HLA-G Alexa Fluor488

A4-431-C025 0.025 mg
EUR 217

Anti-HLA-G Alexa Fluor488

A4-431-C100 0.1 mg
EUR 394

Anti-HLA-G Alexa Fluor488

A4-437-C025 0.025 mg
EUR 217

Anti-HLA-G Alexa Fluor488

A4-437-C100 0.1 mg
EUR 394

Anti-Hu CD300a Alexa Fluor488

A4-501-T100 100 tests
EUR 269

Anti-HLA-A2 Alexa Fluor488

A4-556-T025 25 tests
EUR 154

Anti-HLA-A2 Alexa Fluor488

A4-556-T100 100 tests
EUR 269

Anti-CD3 zeta Alexa Fluor488

A4-568-C100 0.1 mg
EUR 269

Anti-Ms CD8a Alexa Fluor488

A4-579-C025 0.025 mg
EUR 139

Anti-Ms CD8a Alexa Fluor488

A4-579-C100 0.1 mg
EUR 238

Anti-Hu CD326 Alexa Fluor488

A4-582-T100 100 tests
EUR 269

Anti-Hu CD3 Alexa Fluor488

A4-631-T100 100 tests
EUR 269

Anti-Hu CD16 Alexa Fluor488

A4-646-T025 25 tests
EUR 154

Anti-Hu CD150 Alexa Fluor488

A4-660-T100 100 tests
EUR 269

Anti-Hu CD107a Alexa Fluor488

A4-671-T025 25 tests
EUR 154

Anti-Hu CD107a Alexa Fluor488

A4-671-T100 100 tests
EUR 269

Anti-Hu CD107b Alexa Fluor488

A4-672-T025 25 tests
EUR 154

Anti-Hu CD107b Alexa Fluor488

A4-672-T100 100 tests
EUR 269

Anti-Hu CD73 Alexa Fluor488

A4-675-T100 100 tests
EUR 269

Anti-Hu CD11b Alexa Fluor488

A4-681-T025 25 tests
EUR 154

Anti-Hu CD11b Alexa Fluor488

A4-681-T100 100 tests
EUR 269

Anti-Hu CD35 Alexa Fluor488

A4-703-T100 100 tests
EUR 269

Anti-Hu CD305 Alexa Fluor488

A4-713-T100 100 tests
EUR 269

Anti-Hu CD161 Alexa Fluor488

A4-729-T100 100 tests
EUR 269

Anti-Hu CD144 Alexa Fluor488

A4-770-T100 100 tests
EUR 269

Anti-HLA-ABCE Alexa Fluor488

A4-813-C100 0.1 mg
EUR 373

Anti-Ki-67 Alexa Fluor647

A6-155-T025 25 tests
EUR 154

The relationship between BMI and pain varies by MSD, with a stronger relationship in the osteoarthritis group and a less clear relationship in the back and lower back pain group. There is a high prevalence of overweight / obesity among veterans with MSD. The high level of BMI (> 27 kg / m2) is associated with an increase in pain opportunities, the most obvious among veterans with osteoarthritis.

Leave A Comment